Related Specifications
- Stainless steel 1.4919/316H
Properties
Chemical Composition
Stainless Steel Bar
EN 10269:2013
Chemical Element | % Present |
---|---|
Carbon (C) | 0.04 - 0.08 |
Chromium (Cr) | 16.50 - 18.50 |
Molybdenum (Mo) | 2.00 - 2.50 |
Silicon (Si) | 0.00 - 1.00 |
Phosphorous (P) | 0.00 - 0.04 |
Sulphur (S) | 0.00 - 0.02 |
Nickel (Ni) | 10.00 - 13.00 |
Manganese (Mn) | 0.00 - 2.00 |
Nitrogen (N) | 0.00 - 0.10 |
Iron (Fe) | Balance |
Mechanical Properties
Bar Up to 160mm
EN 10269:2013
Mechanical Property | Value |
---|---|
Proof Stress | 205 Min MPa |
Tensile Strength | 490 to 690 MPa |
Elongation A50 mm | 35 % |
General Physical Properties
Physical Property | Value |
---|---|
Density | 8.00 g/cm³ |
Melting Point | 1400 °C |
Thermal Expansion | 15.9 x 10-6/K |
Modulus of Elasticity | 193 GPa |
Thermal Conductivity | 16.3 W/m.K |
Electrical Resistivity | 0.74 x 10-6 Ω .m |
Applications
- Chemical and petrochemical processing – pressure vessels, tanks, heat exchangers, piping systems, flanges, fittings, valves, and pumps
- Food and beverage processing
- Marine
- Medical
- Petroleum refining
- Pharmaceutical processing
- Power generation — nuclear
- Pulp and paper
- Textiles
- Water treatment
- Fasteners
Characteristics
- Excellent for use in elevated temperatures
- Excellent corrosion resistance when exposed to a range of corrosive environments and media
- Good machinability
- Good weldability
Additional Information
Weldability
Fusion welding performance for 316 stainless steel is excellent both with and without fillers. Recommended filler rods and electrodes for 316 and 316L are the same as the base metal, 316 and 316L respectively. Heavy welded sections may require post-weld annealing. 316H is not a good choice for welding.
Oxyacetylene welding has not been found to be successful for joining of 316 stainless steel.
Fabrication
Fabrication of all stainless steels should be done only with tools dedicated to stainless steel materials. Tooling and work surfaces must be thoroughly cleaned before use. These precautions are necessary to avoid cross contamination of stainless steel by easily corroded metals that may discolour the surface of the fabricated product.
Cold Working
Grade 316 is readily brake or roll formed into a variety of parts. It is also suited to stamping, heading and drawing but post work annealing is recommended to relieve internal stresses.
Cold working will increase both strength and hardness of 316 stainless steel.
Corrosion Resistance
Grade 316 has excellent corrosion resistance when exposed to a range of corrosive environments and media. It is usually regarded as “marine grade” stainless steel but is not resistant to warm sea water. Warm chloride environments can cause pitting and crevice corrosion. Grade 316 is also subject to stress corrosion cracking above around 60°C.
Heat Treatment
- 316 stainless steel cannot be hardened by heat treatment.
- Solution treatment or annealing can be done by rapid cooling after heating to 1010-1120°C.
Heat Resistance
Where high strength is required at temperatures above 500°C, grade 316H is recommended.
Hot Working
All common hot working processes can be performed on 316 stainless steel. Hot working should be avoided below 927°C. The ideal temperature range for hot working is 1149-1260°C. Post-work annealing is recommended to ensure optimum corrosion resistance.
Machinability
316 stainless steel has good machinability. Machining can be enhanced using the following rules:
- Cutting edges must be kept sharp. Dull edges cause excess work hardening.
- Cuts should be light but deep enough to prevent work hardening by riding on the surface of the material.
- Chip breakers should be employed to assist in ensuring swarf remains clear of the work
- Low thermal conductivity of austenitic alloys results in heat concentrating at the cutting edges. This means coolants and lubricants are necessary and must be used in large quantities.